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The following attachment represents the abbreviated version of the paper for the special issue 

of the International Journal of Solids and Structures honoring Professor Liviu Librescu. The 

numerical section is limited by the micromechanical analysis (additional results for static 

pressure and blast loading will be included in the complete version of the paper) 

 

Micromechanics and Response of Particulate-Matrix Fiber-Reinforced Functionally 

Graded Composites  

 

Abstract 

Reinforcement of fibrous composites by stiff particles embedded in the matrix offers the 

potential for simple, economic functional grading, enhanced response to mechanical loads and 

improved functioning at high temperature.  The solution shown in the paper extends a version of 

the Mori-Tanaka micromechanics to the case of a fiber-reinforced material with inclusions 

embedded within the matrix.  Furthermore, we present several bounds and estimates for the 

mechanical properties of such composite and show how functional grading within these bounds 

can affect the performance of a structure.  The representative example presented for a rectangular 

simply supported panel subject to uniform transverse pressure illustrates an abrupt decrease in 

deformations due to the addition of a modest amount of particles. The other example suggests 

superior blast resistance of the panel achieved at the expense of only a small increase in weight.   

1. Introduction 

Hybrid composite materials consisting of an isotropic polymer matrix reinforced by both 

particles and unidirectional fibers offer the potential for simple functional grading to tailor 

mechanical response and reduce stress concentrations around attachments and discontinuities.  

Local particle reinforcement can increase stiffness and strength at key locations at the expense of 

a relatively small increase in weight. Moreover, polymeric composite structures subject to 

thermal loading exhibit matrix deterioration at high temperature, but a matrix reinforced with 

ceramic particles offers the potential to increase the structural endurance and load capacity at 

high temperature (Birman and Byrd, 2007).   
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The application of hybrid particulate-matrix fiber-reinforced composites involves an 

analysis of the stiffness of such materials that can be applied to structures with either uniform or 

variable property distribution. For example, the latter structures may represent thin-walled shells 

or plates with in-surface variable stiffness.  A particularly simple and attractive grading scheme 

involves embedding particles only in the outer layers of a laminate, achieving maximal increases 

in bending stiffness with a minimum of additional weight.  Tailoring of the volume fraction of 

particles, especially on the outer laminae of a composite, is far simpler than the alternative of 

varying fiber volume fraction or their orientation.  

A broad range of homogenization methods exist to predict the properties of composite 

materials including particulate inclusions. Several recent reviews and articles outlining these 

methods are available (e.g., Tucker and Liang, 1999 and Kakavas and Kontoni, 2006).  

Additionally, the study of Hu and Weng (2000) is of interest as it outlines and compares 

micromechanical models, including the double-inclusion method (Hori and Nemat-Nasser 1993), 

and the models of Ponte Castaneda and Willis (1995) and of Kuster-Toksoz (1974) and the well 

known Mori-Tanaka model (1973).   

A general approach to the characterization of a hybrid composite consisting of three 

different phases was proposed by Kanaun and Jeulin (2001), based on the effective field method.  

This method is based on the assumption that the strain field acting on every inclusion varies for 

different populations. The disadvantage of the method is related to its high dependency on the 

precision of the micromechanical information about constituent phases, so that while the 

theoretical solution may be accurate, practical implementations would depend on the tight 

control of the manufacturing process that cannot be achieved at a reasonable cost in industry.  

The analysis presented here is based on the use of the modification of the Mori-Tanaka 

method (Mori and Tanaka, 1973) suggested by Benveniste (1987). In addition, the upper and 

lower bounds of the material constants (moduli of elasticity, and shear, the bulk modulus of a 

particulate material and the Poisson ratios) are determined using the bounding techniques. 

Available bounds include those by Voight and Reuss (Hill, 1952), the Hashin method for a 

particulate material (Hashin, 1962) combined with the Hashin-Shtrikman bounds for a fiber-

reinforced material (Hashin and Shtrikman, 1962, 1963), the Weng approach (Weng, 1992) and 

the three-point bounds technique (Milton and Phan-Tsien, 1982). The accuracy of these methods 
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has been debated in literature. For example, the modulus of elasticity of a particulate material 

can be accurately evaluated using the Mori-Tanaka method only if the volume fraction of the 

inclusions does not exceed 40% (Kwon and Dharan, 1995; Sun et al., 2007). The Hashin bounds 

are also imperfect predicting an exceedingly wide spectrum of the modulus of elasticity at large 

particle volume fractions. At the same time, the predictions obtained by the Mori-Tanaka and 

Hashin methods for the Poisson ratio of particulate composites were found quite accurate (Sun et 

al., 2007).  On the other hand, Noor and Shah (1993) showed that the Mori-Tanaka method 

provides an accurate prediction of the properties of fiber-reinforced composites even at a high 

volume fraction of fibers.  In the following analysis the volume fraction of particles is assumed 

quite small reflecting the presence of fibers that occupy a significant volume within the material. 

Accordingly, it is acceptable to rely on the Mori-Tanaka method while the bounding techniques 

are also applied to reflect a range of anticipated variations of the materials properties.  

The paper presents a formulation of micromechanics for a particulate-matrix fiber-

reinforced material based on the extrapolation of the Benveniste approach (1987) for the case of 

dissimilar inclusions (fibers and particles). Subsequently, the bounding techniques outlined 

above are applied in a two-step solution: the bounds are first established for a particulate matrix 

and subsequently, these bounds are employed to establish bounds for this matrix reinforced by 

unidirectional fibers. Furthermore, the results of the homogenation conducted by on the 

particulate-matrix laminae are applied to predict the properties of a cross-ply material consisting 

of such laminae. Finally, the advantages available embedding a small amount of particles in 

fiber-reinforced materials are illustrated on the examples of a simply supported cross-ply 

composite plate subject to static pressure or dynamic blast overpressure. In both these examples, 

adding glass particles to a glass/epoxy plate material resulted in significant reductions of 

maximum deformations achieved with a very modest additional weight.    

2. Benveniste-Type Estimate of the Stiffness of a Fiber-Reinforced Particulate Material 
 
Consider a material where two different types of isotropic inclusions are distributed 

within an isotropic matrix.  The properties of the matrix are identified in the subsequent solution 

with the subscript i = 1, while two types of the inclusions are denoted by i = 2 and i = 3. We 

take phase 2 to be spherical particles and phase 3 to be aligned fibers.  Each type of inclusion 
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possesses a definite geometry. Then the stiffness tensor of the material can be derived as a 

generalization of the Mori-Tanaka approach. In the present paper this generalization is based on 

the solution by Benveniste (1987) for a particulate composite with a single type of inclusions.  

The approach is based on the following assumptions: 

1. All material phases are isotropic and linearly-elastic. 

2. The perturbed strain in the matrix due to the presence of inclusions is not affected by the 

interaction of two types of inclusions. In other words, each type of inclusion i = 2 and 

i = 3 affect the strains in the matrix, but the perturbed matrix strain due to the interaction 

between these inclusions that is assumed to be of the second order is neglected. 

3. Phase 3 is represented by unidirectionally-oriented fibers of circular cross section; i.e., 

the composite material is a lamina with embedded particles. This assumption is only 

needed to utilize the Eshelby tensor for cylindrical inclusions.  In general, the derivation 

shown below is independent of the orientation and shape of fibers and particles as long as 

the corresponding Eshelby tensor is known.  

The average stress and average strain tensors for the material under consideration are 

related through the effective stiffness tensor: 

σ = L ε  (1) 

where the bar denotes a volumetric average. 

The effective stiffness tensor for a matrix with two different types of embedded 

inclusions can be given as a generalization of the expression proposed by Hill (1963): 

  L = L 1 + f2 L 2 − L 1( )A 2 + f3 L 3 − L 1( )A 3 (2) 

where L i is the stiffness tensor of the ith phase, f2 and f3 are volume fractions of the 

corresponding types of inclusions, while the tensor of concentration factors A 2 and A 3 represent 

the relationship between the tensors of average strains in the corresponding inclusions ε i( ) and 

the mean remote strain tensor ε 0( ):  

033022 , εεεε AA ==  (3) 



5 

 

Note according to the second assumption, this approach does not explicitly account for the 

interaction of different types of inclusions. Accordingly, it is applicable only if at least one type 

of inclusion has a relatively small volume fraction. 

Expanding the Mori-Tanaka (1973) ideas, the tensors of average strain in the matrix and 

in inclusions are represented as  

33203

23202

3201

~~
~~
~~

εεεεε
εεεεε

εεεε

′+++=

′+++=
++=

 (4) 

where iε~ are tensors of perturbations superimposed on the average strain in the matrix as a result 

of the presence of the corresponding inclusions, and iε ′ are tensors of average perturbed strain in 

the inclusions relative to the tensor of average strain in the matrix. 

The tensors of average stresses in the inclusions can now be expressed in terms of the 

stiffness of the matrix: 

( ) ( )
( ) ( )∗

∗

−′+++=′+++

−′+++=′+++

33320133203

22320123202

~~~~

~~~~

εεεεεεεεε

εεεεεεεεε

LL

LL
 (5) 

where ∗
iε are tensors of average correlation strain in the corresponding type of inclusions. These 

tensors are related to the tensors of perturbations in the inclusions defined above by 

3
1

332
1

22 εεεε ′=′= −∗−∗ SS  (6) 

where S i
−1 are fourth-order Eshelby’s tensors.  These tensors are presented in the Appendix 1 for 

the cases of spherical inclusions and for infinitely long cylindrical inclusions (fibers). 

It is evident from (4) and (5) that the tensors of perturbation strains can be expressed in 

terms of the tensors of average strain in the corresponding inclusions as 

( ) ( )3,21
1

1 =−=′ − iiiii εε LLLS . (7) 

As also directly follows from (4), 
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1εεε −=′ ii . (8) 

It will be necessary for the subsequent transformation to express the tensors of average 

strain in each type of inclusions in terms of the tensor of the average strain in the matrix, i.e. to 

find the coefficient tensors in the equations 

1εε ii T=   (9) 

This is easily accomplished using (7) and (8): 

T i = I + S iL 1
−1 L i − L 1( )[ ]−1

   (10) 

where I  is a fourth-order unit tensor. 

The tensors of concentration factors are now determined expressing the tensor of the 

applied strain that also represents the average strain in an equivalent homogeneous material in 

terms of strains in the constituent phases through the rule of mixtures: 

3322110 εεεε fff ++=  (11) 

Using eqns. (3) and (9) in (11) yields 

A i = T i f1I + f2T 2 + f3T 3( )−1 (12) 

Using the concentration tensors as given by (12) in the tensor of effective stiffness (2) 

yields the solution: 

L = L 1 + fi L i − L 1( )T i f1I + f2T 2 + f3T 3( )−1

i=2

3

∑  (13) 

The computations utilizing (13) can be performed using the tensor decomposition 

presented by Walpole (1983) and summarized recently by Sevostianov and Kachanov (2007).  
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Note that in case of a single type of inclusions this result converges to the formula derived by 

Benveniste (1987). 

3. Two-Step Approach to the Evaluation of the Elastic Response of a Particulate-Matrix 

Fiber-Reinforced Composite Material 

According to the approach adopted in this paper, conventional bounds and estimates are 

applied to evaluate the tensor of stiffness  of the isotropic particle-reinforced matrix. 

Subsequently, this tensor of stiffness is used to obtain bounds and estimates for the stiffness of a 

composite comprised of isotropic fibers embedded in this isotropic particle-reinforced matrix. In 

this section, we concentrate on three-point bounds since as shown in numerical examples they 

appear provide the tightest range of possible values of material constants. 

3.1 Bounds and Estimates of the Mechanical Response of the Particle Reinforced Matrix 

Beran and Molyneux (1966) and McCoy (1970) obtained three-point bounds on the 

effective bulk modulus and the effective shear modulus for two-phase composites. These contain 

two calculated parameters, ζ2 and η2 (additionally, η1 = 1 – η2, ζ1 = 1 – ζ2) that characterize the 

shape and distribution of the two phases (e.g. Torquato, 1991) and must be evaluated 

numerically.  Milton and Phan-Thien (1982) further improved the McCoy (1970) shear-modulus 

bounds.  

The three-point Milton-Phan-Thien (1982) bounds on the effective shear modulus Ge for 

isotropic two-phase composites are given by:  

G −
φ1φ2 G2 − G1( )2

˜ G + Ξ
≤ Ge ≤ G −

φ1φ2 G2 − G1( )2

˜ G + Θ
 (14) 

where   

Ξ =

128
K

+ 99
G ζ

+ 45 1
G η

30 1
G ζ

6
K

− 1
G ζ

+ 6 1
G η

2
K

+ 21
G ζ

, and (15) 



8 

 

Θ =
3 G

η
6K + 7G

ζ
− 5 G

ζ
2

6 2K − G ζ + 30 G η

, (16) 

in which  denotes a weighted average ( G = G1φ1 + G2φ2 , G ζ = G1ζ1 + G2ζ2 ,  

G η = G1η1 + G2η2), and a tilde represents a reverse-weighted average, e.g. ˜ G = G2φ1 + G1φ2.  

Here, φ1 and φ2 are the volume fractions of epoxy and (relatively stiff) spherical particles, 

respectively, within the particulate-reinforced matrix; these relate to f1 and f2 as φ2 = f2 /(f1 + f2), 

with φ1 = 1 – φ2.   

The simplified form (Milton, 1981) of the three-point Beran-Molyneux (1966) bounds on 

the bulk modulus Ke of isotropic two-phase composites is given by: 

K −
φ1φ2 K2 − K1( )2

˜ K +
2 d −1( )

d
G−1

ζ

−1
≤ K pm

eff ≤ K −
φ1φ2 K2 − K1( )2

˜ K +
2 d −1( )

d
G ζ

 (17) 

where d = 3. 

Calculation of ζ2 and η2 is computationally expensive, and values have been reported for 

only a limited number of microstructures at this time.  These values range between 0.15φ2<ζ2<φ2 

and 0.5φ2<η2<φ2 (Torquato, 1991).  For randomly-spaced spherical particles, ζ2~0.211φ2 and 

η2~0.483φ2 (Torquato, 2001).  The dense packing limit for spherical particles is that φ2 cannot 

exceed approximately 0.63. 

Approximations lying between these bounds are available:  

φ2
κ21
κe1

=1−
d + 2( ) d −1( )G1κ21μ21

d K1 + 2G1( )
φ1ζ2

  (18) 

and  

φ2
μ21
μe1

=1− 2G1κ21μ21
d K1 + 2G1( )

φ1ζ2 −
ζ2 d 2 − 4( )G1 2K1 + 3G1( )+η2 dK1 + d − 2( )G1( )2

2d K1 + 2G1( )2 μ21
2 φ1, (19) 
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where d=3, κ21 = K2 − K1
K2 − AG1

, κe1 = Ke − K1
Ke − AG1

, μ21 = G2 − G1
G2 − BG1

, μe1 = Ge − G1
Ge − BG1

, A =
2 d −1( )

d
, and 

B =
dK1 21 + d +1( ) d − 2( )G1 d

K1 + 2G1
. 

3.2 Bounds and Estimates of the Mechanical Response of the Fiber- and Particle-Reinforced 

Lamina 

We now study the mechanics of a lamina containing aligned fibers of volume fraction f3 

embedded in an isotropic matrix of volume fraction f1 + f2 with the above characteristics.  The 

dense packing limit requires f3< 0.83.  Five separate moduli are needed to fully describe the 

linear elastic response of this transversely isotropic material but only three of the effective 

moduli are independent (Hill, 1963). 

Transverse shear modulus  

The Silnutzer three-point lower bound on the transverse shear modulus, Ge
T , is given by 

Eq. (14) and Eq. (15) (Silnutzer, 1972; Torquato, 2001) with φ1 replaced with (f1 + f2), φ2 

replaced with f3, η2 = 0.276 f3, ζ2 = 0.691 f3 + 0.0428 f3
2, and  replaced with f , where, for 

example, G f ≡ f1 + f2( )Gpm + f3Gfib .  Here, a subscript of fib refers to properties of the fibers 

(i=3), a subscript of pm refers to properties of the particle reinforced matrix (i=1 and 2). 

The Gibiansky-Torquato (1995) upper bound for Ge
T  is tighter than the Silnutzer bound.  

Making the above substitutions, the Gibiansky-Torquato upper bound is obtained from Eq. (14) 

using the following definition for Θ:  

Θ−1 =

1
G−1 + Kmax

−1
η

−1

+ 1
Kmax

, t ≤ − 1
Kmax

2 K −1
ζ

+ G−1
η

−
H + Z[ ]2

˜ G −1
η

+ 2 ˜ K −1
ζ

, − 1
Kmax

≤ t ≤ 1
Gfib

2 1
Gfib

−1 + K−1
η

−1

+ 1
Gfib

, t ≥ 1
Gfib

⎧ 

⎨ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 

⎩ 

⎪ 
⎪ 
⎪ 
⎪ 
⎪ 

 (20) 
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where Kmax is the greater of Kpm and Kfib, Gfib > Gpm, t = ˜ G −1
η

− 2 H Z( ) ˜ K −1
ζ

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 1+ H Z( )( ), 

H = η1η2 Gfib
−1 − Gpm

−1( )2
, and Z = ζ1ζ2 K fib

−1 − K pm
−1( )2

. 

An estimate for Ge
T  within these bounds is provided by Eq. (19), with d=2. 

Transverse bulk modulus 

The Silnutzer three-point lower bound on the transverse bulk modulus, Ke
T , is given by 

Eq. (14) and Eq. (15) (Silnutzer, 1972; Torquato, 2001) with, as above, φ1 replaced with (f1 + f2), 

φ2 replaced with f3, η2 = 0.276 f3, ζ2 = 0.691 f3 + 0.0428 f3
2, and  replaced with f . 

A tighter upper bound is the Gibiansky-Torquato upper bound (Gibiansky and Torquato, 

1995; Torquato, 2001): 

Ke
T ≤ K f −

f1 + f2( )f3 K f − K pm( )2
G

ζ

˜ K 
f

+
Gf Gpm + K f

K f + ˜ G 
ζ

 (21) 

An  estimate for the lower bound Ke
T  is obtained by Eq. (19), with d=2. 

Longitudinal-transverse shear modulus 

The shear modulus for distortion of the laminate in axes with one direction aligned with 

the fiber axes is given by the Hashin-Rosen (1964) bounds: 

G
f

+ Gfib

˜ G 
f

+ Gpm
Gpm ≤ Ge

LT ≤
G

f
+ Gpm

˜ G 
f

+ Gfib
Gfib . (22) 

The Tsai-Halpin semi-empirical equations provide estimates within these bounds for values of 

the parameter ξ in the range 0 ≤ ξ ≤ 25:  

Ge
LT ≈

1+ ξωf3

1−ωf3

Gpm , (23) 
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where ω =
Gfib Gpm( )−1
Gfib Gpm( )+ ξ

. 

( )
( )

( )( )( )( )
( )( ) ( ) ( )( )( )

( )( )( )( )[
( )( ) ( ) ( )( )]

( )( )( )( )[
( )( )( )]333

33
'

333

33
'

3
'

3
''

3

'
3

'
3

2

3

3

4242

222~

22222

222~

22222

222~

2
22

fGfGGGfGGGG

fGfGGGGG

fGGGGGffGGGG

fGfGGGGG

fGGGGGGfGGfGGGG

GfGGfGGGG
df

dG

G
fGGGG
fGGGG

G

pmfibpmfibpmfibpmfib

pmpmfibpmfibpm

pmfibpmfibpmpmfibpmfib

pmpmfibpmfibpm

pmfibpmfibpmpmpmpmpmfibpmfib

pmpmpmpmfibpmfib

LT
e

pm
pmfibpmfib

pmfibpmfibLT
e

−++−−++

+−++−

−+++−−−++

+−++−

−+++−−−++

+−++−

−−+
−++

≈

  

The value ξ = 2 has been shown to provide a good estimate for laminae containing regularly 

spaced, aligned fibers, and will be adopted in the following. 

Longitudinal stiffness 

As described by Torquato (2001), the longitudinal stiffness Ee
L  of a transversely isotropic 

two-phase lamina is dictated by the bounds or estimates of the aforementioned properties (Hill, 

1964): 

Ee
L = E f +

4 ν pm −ν f( )2

1
k fib

− 1
kpm

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2
1
k f

− 1
Ke

T + Ge
T 3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  (24) 

where ν is Poisson’s ratio of the isotropic particular matrix (pm) or fibers (f), and ki = Ki + Gi / 3 

for each phase i.  

Lateral/transverse Poisson’s ratio 

The effective Poisson’s ratio νe
LT  is dictated by the other material constants of the 

laminate (Hill, 1964; Torquato, 2001): 
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νe
LT = ν f +

ν pm −ν f( )
1

kpm
− 1

k fib

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1
k f

− 1
Ke

T + Ge
T 3

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  (24) 

where ν is Poisson’s ratio, and ki = Ki + Gi / 3 for each phase i.  

3.2 Moduli and bending stiffness of a 0/90 laminate composite 

Three elastic constants are required to assemble the effective in-plane mechanical 

properties of a symmetric 0/90 laminate with equal numbers of laminae in the 0° and 90° 

directions.  These can be written, for axes parallel to the fiber directions, as:  

νo = 2c12
c11 + c22 + 2c23

Eo = c11 + c22
2

− 2c12νo

Go = GLT

 (25) 

where c11 = αE L 1−νT
2( ), c22 = αET 1− ET

E L ν LT( )2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , c12 = αETν LT 1+ν T( ), c23 = αET ν T + ET

E L ν LT( )2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , 

ν T = ET 2GT( )−1, and α = 1− 2 ν T( )2
− ET

E L ν LT( )2
1− 2ν T( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
−1

. 

4. Effectiveness of Particulate-Matrix Fiber-Reinforced Composites 

The following representative examples illustrate the advantages available adding a 

relatively small amount of spherical particles to the matrix of fiber-reinforced composites. Two 

cases considered here include simply supported panels subject to an instantaneously applied 

uniform pressure and the panels undergoing overpressure due to an explosive blast. We will 

focus only on choosing the volume fraction of spheres that optimizes weight and stiffness of the 

structure.  Cross-ply panels considered here have dimensions a by b (in the x- and y-directions, 

respectively), thickness h, and density ρ. The mass m of such a panel is 

m = ρabt (26) 
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The peak deflection δ due to an instantaneously applied uniform pressure, p, on one face 

of the panel, is obtained applying a magnification factor of 2=μ  to the static one degree of 

freedom approximate solution that was shown to yield an error equal or smaller than 2.1% in 

isotropic panels (Lekhnitskii, 1968): 

( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+=≈
abk

k
abk

k
kkD

pa
st 2cosh2cosh

11
384
5

2

2
1

1

2
2

2
2

2
11

4

μμδδ  (27) 

where  548.97436.97871.9
2

1

3

1

3
2,1 −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
±=

D
D

D
Dk , and the stiffnesses Di are found in terms of 

plate bending stiffness as follows: 

( )
( ) ( )

( )
( ) ( )
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22112112
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6612221166
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1122
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22
66221112
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22
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6612
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1111

2

2
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66123222111

,
1

,,
1

cos,sin
22

22

4

22

2,,

GQEQQQEQ

cs
csQcsQQQQQ

cQcsQQsQQ

csQcsQQQQ

sQcsQQcQQ

dzzQD

DDDDDDD
h

h
ijij

=
−

==
−

=

==
++−−+=

+++=

++−+=

+++=

=

+===

∫
−

νν
ν

νν

θθ

 (28) 

In (28), θ is the lamination angle of the layer, ijQ are reduced stiffnesses, 1E and 2E are the layer 

moduli of elasticity in the fiber direction and in the direction perpendicular to fiber, respectively, 

12G is the layer in-plane shear modulus, and 2112 , νν are the Poisson ratios.  

           In addition to the response to an instantaneously applied pressure, it is also possible to use 

the solution of Lekhnitskii shown above to predict the response of the panel to an explosive  

blast. Problems of response of structures to blast have been considered by a number of authors, 

including Houlston et al. (1985), Gupta (1985), Gupta et al. (1987), Birman and Bert (1987), 
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Librescu and Nosier (1990), Librescu and Na (1998a, 1998b). The blast overpressure is usually 

uniformly distributed over the surface of the panel and can be presented by the Friedlander 

exponential decay equation: 

( ) ( )p
p

tta
t
tptp /exp1 ′−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=   (29) 

where p is a constant, t is time, pt is a positive phase duration of the pulse and a′ is an 

experimental decay parameter.    

The response can now be evaluated using a single-degree of freedom Lekhnitskii’s 

approximate solution combined with the convolution integral:  

( ) ( )tft stδδ =            (30) 

where the function of time is obtained using integrals from the web site mathematica.com as 

follows (see Appendix 2 for a justification of the solution): 

( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( ) ( )( )( )[ ]
( ) ( ) ( )[ ] ( ) ( )[ ]( ){ }tatattaattI

tttatat
t
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ItI
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dt
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a
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npnnpnpnp
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p
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ωωωωω
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ωξξωξξω

sin1cos20

2exp

0sinexp1

2222
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⎜
⎜
⎝
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⎜
⎜
⎝

⎛
−= ∫

  (31) 

In (31), nω is the natural frequency. The latter frequency could be determined using (30) in the 

Ritz solution to the problem of free vibrations of the plate. However, considering the smallness 

of the error obtained using the static Lekhnitskii solution, it is possible to use the exact solution 

for the fundamental frequency of the plate, so that  

⎟
⎠
⎞

⎜
⎝
⎛ ++= 4

2
22
3

4
1

4
2 2

b
D

ba
D

a
D

mn
πω            (32) 

where m  is the mass of the plate per unit surface area. 
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5. Numerical Results  

Material constants of an epoxy matrix with spherical glass inclusions were evaluated 

using the Mori-Tanaka theory and compared to several available bounds in Fig. 1. The bounds 

included in this figure are those by Voight and Reuss, Hashin-Shtrikman, and three-point 

bounds. Additionally, the weak contrast estimate is provided in Fig. 1. Remarkably, the Mori-

Tanaka estimate is always within the Voight-Reuss bounds. This estimate was also found close 

to the lower three-bound estimate by the Hashin-Shtrikman and by three-point bounds, for the 

elasticity, shear and bulk moduli, while the prediction for the Poisson ratio was close to the upper 

bounds according to these techniques. It should be noted that while the Mori-Tanaka predictions 

remain within the bounds according to Hashin-Shtrikman, they were slightly outside the bounds 

by the three-point technique, particularly at larger particle volume fractions, though the deviation 

remained quite small. Overall, the results shown in Fig. 1 support the previously cited opinion 

that the Mori-Tanaka theory is acceptable, at least for the particle volume fraction below 40%.   

The results shown in Fig. 2 refer to the properties of a particulate-matrix fiber reinforced 

material (glass fibers and particles and epoxy matrix). The bounds shown in this figure rely on 

strict three-point bounds from Fig. 1 that are applied to the case of a fiber-reinforced composite 

according to the equations shown in the paper. All moduli are normalized by those of the epoxy 

matrix. As follows from the figure, the “Generalized Benveniste” estimate corresponding to Eq. 

(13) remains within the bounds only if both the fiber as well as the particle volume fractions are 

small. It is interesting to note that while the present theory predicts the longitudinal elastic 

modulus that is higher than the upper three-point bound, the transverse modulus is lower than the 

lower bound. This means that while the present model overestimates the longitudinal stiffness of 

a particulate-matrix fiber-reinforced lamina, the transverse stiffness is underestimated. 

Accordingly, the shortcomings of the model for a single lamina (that is never contemplated in 

realistic design, anyway), may cancel each other in a cross-ply material. This assumption is 

further investigated in Fig. 3. Remarkably, the result shown in this figure indicates that the 

predictions for the stiffness obtained by the present theory for a cross-ply material remain within 

the tightest three-point bounds (actually, almost coincide with the lower bound). This means that 

the theory can successfully be applied to the prediction of the stiffness of particulate-matrix 

fiber-reinforced cross-ply composites. 
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Appendix: Eshelby’s tensors (Zhao and Weng, 1990) 

(1) Components of Eshelby’s tensor for a spherical inclusion embedded within an isotropic 

matrix: 
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where 1ν is the matrix Poisson ratio. 

(2) Eshelby’s tensors for a cylindrical inclusion embedded within an isotropic matrix  
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Appendix 2: Response of the structure modeled by a single-degree-of-freedom system to an 

arbitrary dynamic load using the static solution 

The dynamic response of a single degree of freedom undamped system to an arbitrary 

load is governed by the following equation of motion (all notations are standard for the theory of 

vibrations): 

( )tfkwwm =+&&         (B1)  

 The convolution integral describing steady state vibrations is  

( ) ( )∫ −=
t

n
n

dtf
m

w
0

sin1 ξξωξ
ω

       (B2) 

where nω is the natural frequency.  

 Consider a structural system modeled by a single-degree-of-freedom approximation as 

was done in the solution of Lekhnitskii for a rectangular simply supported plate. Let the equation 

of static equilibrium be 

( ) pL st ˆ=δ           (B3) 

p̂  being a static load and stδ  the static solution that satisfies (B3).  

 If the same system is subject to a dynamic load ( )tfp̂ , the equation of motion is 

( ) ( ) δδ &&mtfpL −= ˆ          (B4) 

 Assume the solution in the form ( )tFstδδ = .  

 Then the substitution of (B3) into (B4) yields 

( ) ( )ststst fLFLFm δδδ =+&&         (B5) 

 From the comparison with (B1) and (B2) it is obvious that 

( ) ( ) ( ) ( ) ( ) ξξωξωξξωξ
δ
δ dtfdtf

m
LF n

t

nn

t

st

st −=−= ∫∫ sinsin
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   (B6) 

where the natural frequency is ( )
st

st
n m

L
δ
δω = .  
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Figure 1.  Estimates and bounds for the stiffening of an isotropic epoxy matrix 

 by spherical glass inclusions. 
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Figure 2.  Estimates and bounds for the stiffening of a composite containing varying 

volume fractions f3 of isotropic glass fibers by a volume fraction f2 of spherical glass inclusions.  

The upper and lower bounds pictured are calculated using the upper and lower bounds from 

Figure 1 in conjunction with the bounding procedures described in the text.  Moduli are 

normalized by those of epoxy. 
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Figure 3.  Estimates and bounds for the stiffening of a symmetric 0/90 cross-ply 

composite containing varying volume fractions f3 of isotropic glass fibers by a volume fraction f2 

of spherical glass inclusions.  Moduli are normalized by the elastic modulus of epoxy. 

 

 


